Technical Question

1. The Architecture of SMARTS MEV System

Our Smarts MEV system is composed of four main components:

Mempool Data Streaming and Detection Module (Hybrid On-chain/Off-chain) We implement a high-speed gRPC-based mempool data stream, enabling us to capture the latest pending transactions with latency under 100 ms. Each time a new pending transaction enters the mempool, our detection algorithm performs an initial assessment to determine whether there is a potential MEV opportunity.

Sandwich Attack Bundle Construction Module (Off-chain)

This is the core of our system. When a target (victim) transaction is identified, our algorithm calculates the optimal frontrun amount needed to drive the token price up to the victim's maximum allowed slippage. This ensures maximum profit while dynamically balancing the priority fee paid to miners or block builders. The result is a constructed bundle consisting of a frontrun transaction \rightarrow victim transaction \rightarrow backrun transaction.

Simulation Module (Hybrid On-chain/Off-chain)

After constructing the bundle, we simulate the transaction sequence in our local node environment by calling smart contracts to find the optimal trading path and gas price. This allows us to predict the post-trade state, ensuring we avoid risks such as interacting with honeypot tokens (e.g., tokens that cannot be sold or incur excessively high taxes on sale).

Trade Execution Module (On-chain)

This module is responsible for calling smart contracts to optimize gas usage and submitting the finalized transaction bundle.

2. How Exactly a Profitable MEV Attack Works in SMARTS

Spot a big trade in the mempool

Bots monitor the mempool (pending transactions) and detect a large trade with sizable slippage tolerance—signaling a profit opportunity

Calculate optimal frontrun parameters

Using our algorithm, the bot determines the ideal gas fee and trade size to push the token price up to the victim's maximum allowed slippage.

Construct the bundle

A bundle refers to a group of multiple transactions (frontrun, victim trade, and backrun) submitted together to a block builder or miner for execution in a specific order. Bundling ensures all transactions are executed atomically and profitably—either all succeed or none do.

1) Frontrun with a buy

The attacker sends a buy order before the victim's trade to raise the token price just in time

2) Let victim's trade execute

The victim unwittingly buys at the now-inflated price—effectively paying more due to the bot's front-run transaction

3) Backrun with a sell

Immediately after the victim, the bot sells the tokens it bought earlier, locking in profit

Submit the bundle on-chain

The entire bundle (frontrun, victim trade, backrun) is submitted atomically to ensure ordered execution and successful extraction.

3. How Does Your Technology Differentiate from Other MEV Solutions on Solana

Fundamentally, all MEV strategies follow similar mechanisms. Most MEV solutions on Solana focus on raw speed, but ignore user experience and trade management.

What truly sets us apart is the performance of the underlying infrastructure, specifically, the speed of execution (low-latency monitoring), efficiency in transaction fee optimization, and the intelligence of opportunity detection algorithms.

We've built a full-stack infrastructure that combines speed, intelligence, and usability. That's what gives us an edge. We use low-latency infrastructure for real-time monitoring, a dynamic gas optimization algorithm that adjusts fees based on network conditions, and an advanced MEV opportunity detection algorithm that continuously identifies high-value trades ahead of the curve.

4. Why You Need External Money From Users and Why With More Users the Return Won't Be Diluted

The reason we seek external funding is simple: with more capital, we can significantly scale and optimize our MEV operations. Specifically:

Scale up hardware facilities. More capital allows us to deploy additional computing power and run more nodes, which enhances our ability to execute MEV strategies efficiently and at scale.

More Aggressive MEV Opportunity Targeting. With sufficient funds, we can loosen the constraints on our MEV opportunity identification algorithms. This enables us to adopt a more aggressive approach—for example, using blind pre-orders to preemptively compete for MEV opportunities. This not only improves our profit potential but also helps suppress competitors, since MEV is fundamentally a zero-sum game.

Expansion Across Chains and Strategies. Additional funding also supports our expansion into other blockchains, as well as into more advanced forms of MEV, such as atomic arbitrage and backrun-based liquidations, further amplifying profit potential.

5. Why Not Open-Source Codes and Smart Contracts

We do not open-source any core technical details or system code, and for good reason:

MEV has always been the crown jewel of blockchain technology—highly complex and fiercely competitive. To stay ahead and capture MEV opportunities, one must rely on system-level optimizations, robust infrastructure, and cutting-edge algorithms. It is fundamentally a zero-sum game.

Our core advantage lies in the meticulously built system and continuously optimized algorithms we've developed over a long period. As such, it is absolutely out of the question for us to open-source any part of our MEV system's code. If it were ever leaked, competitors could quickly replicate our approach and directly compete with us, ultimately eroding our profits.

If you've done your own research, you'll find that: There are some open-source mev bots in github, most of them contain backdoors or malicious code designed to steal private keys and some of them are educational only, with no real-world profitability.

6. Client Deposits

- Which network address do client funds go to immediately after depositing via the bot?
- Why is the deposit wallet empty, while the payout wallet has ~30,000 USDT—significantly less than the profits the platform claims to generate in just a few hours?
- Can you provide a full list of addresses where deposits are sent and show the last 10 transactions involving them?

Ans: We have developed a secure and comprehensive fund management system to handle deposits and distributions within the SMARTS MEV platform. Each user is assigned a unique deposit address. Once a deposit is detected, our system automatically routes the funds into designated hot wallets via our internal transaction router.

This router manages multiple groups of hot wallets for both payouts and MEV trading. The wallet you referenced is only one within a broader group and does not represent the total funds under management.

For security reasons, preventing exchanges, malicious actors, or external parties from identifying and targeting our hot wallets, and to safeguard user privacy by avoiding traceability to individual deposit addresses, we are unable to share the complete list of wallet addresses or transaction histories.

Technology & Architecture

1. What specific need was SMARTS built to solve?

Ans: SMARTS was created to solve the problem of limited access to MEV opportunities. Historically, only highly technical traders with deep blockchain knowledge could benefit from MEV. Most people were locked out because they didn't know how to run bots, configure RPCs, or manage gas strategies.

SMARTS changes that. It makes MEV accessible to everyone through a simple, automated interface. Users no longer need to understand code or backend systems. They can just connect a wallet and start using the bot, making MEV a real source of on-chain income for everyday users. We specialize in blockchain infrastructure, which positions us well to capitalize on this.

2. How does your technology differentiate from other MEV solutions on Solana?

Ans: Fundamentally, all MEV strategies follow similar mechanisms. Most MEV solutions on Solana focus on raw speed, but ignore user experience and trade management.

What truly sets us apart is the performance of the underlying infrastructure, specifically, the speed of execution (low-latency monitoring), efficiency in transaction fee optimization, and the intelligence of opportunity detection algorithms.

We've built a full-stack infrastructure that combines speed, intelligence, and usability. That's what gives us an edge. We use low-latency infrastructure for real-time monitoring, a dynamic gas optimization algorithm that adjusts fees based on network conditions, and an advanced MEV opportunity detection algorithm that continuously identifies high-value trades ahead of the curve.

3. Does each user operate through a dedicated smart contract, or is there a shared system?

Ans: No, users do not operate through one-to-one dedicated smart contracts, as that would lead to redundancy and reduce MEV efficiency. Instead, we use a unified system architecture that dynamically allocates user funds across a pool of managed accounts. This allows for optimal execution speed, efficient capital deployment, and better coordination of MEV strategies.

4. What kind of RPC infrastructure is used (hosted, private, decentralized)?

Ans: We use our private self-hosted RPC node cluster. This setup ensures that our bots get consistent access to up-to-date mempool data. We're not relying on public

endpoints, which often have delays or rate limits. Our RPC stack is optimized for speed, reliability, and scalability as the number of users grows.

5. Is execution handled fully on-chain, or partially off-chain?

Ans: It is partially off-chain. Strategy computations and optimizations are handled off-chain, and the simulation of the bundle is also handled in our local simulation node environment, while execution remains on-chain.

6. What programming language is used (Rust, Anchor, or others)?

Ans: The on-chain smart contracts are written in Rust using the Anchor framework. For off-chain components, including algorithmic computations and routing optimizations, we use both Rust and Go.

7. Is the backend hosted on private infrastructure or public cloud servers?

Ans: The backend is currently hosted on a mix of private infrastructure and public cloud (like AWS) for flexibility and scalability. The most critical parts of the backend, such as bot control, real-time strategy computation, and trade dispatch, are run on private servers. We also use public cloud services for secondary workloads like logging, performance monitoring, and scale testing. This gives us both reliability and control.

8. How do you prevent your infrastructure from being blocked by Solana RPCs or DEX APIs?

Ans: We operate a private, self-hosted Solana RPC node cluster, which eliminates reliance on public endpoints and avoids rate limits entirely. Within this cluster, we implement dynamic switching and load balancing to ensure high availability, minimize latency, and prevent any single node from becoming a bottleneck.

9. How many trades per second can the system handle realistically?

Ans: The system's processing capacity is not the bottleneck. The actual trade volume depends on two factors: the number of MEV opportunities detected and how many transactions can be included in a Solana block. Theoretically, our infrastructure is capable of handling all pending transactions in Solana's mempool in real time, without performance limitations on our side.

10. How often is the mempool scanned?

Ans: We don't perform traditional mempool scanning or periodic snapshots, as that would introduce unnecessary latency. Instead, we use the Yellowstone WebSocket protocol to receive real-time, continuous updates from the mempool. This pushbased approach filters transactions as soon as they appear, thereby ensuring minimal delay and faster reaction times to MEV opportunities.

11. What is your current transaction throughput and number of active users?

Ans: When our system detects an MEV opportunity, typically a swap with unusually high slippage, our algorithm calculates the optimal frontrun amount and constructs a transaction bundle that includes both the frontrun and backrun. This ensures no other transactions can interfere between them, making the slippage outcome deterministic and controlled.

12. Which Solana DEXs are integrated?

Ans: We currently support several of the leading decentralized exchanges on Solana. These include Pump, Orca, Raydium, and Meteora. Each of these DEXs brings a unique liquidity profile and integration structure, which allows our bots to operate effectively across a variety of pools and market depths.

13. What mechanisms are in place to handle slippage or gas spikes?

Ans: When our system detects an MEV opportunity, typically a swap with unusually high slippage, our algorithm calculates the optimal frontrun amount and constructs a transaction bundle that includes both the frontrun and backrun. This ensures no other transactions can interfere between them, making the slippage outcome deterministic and controlled.

For gas optimization, we use a dynamically adaptive estimator powered by our Al model, which adjusts fees in real time based on network conditions and execution probability to avoid overpayment while maintaining priority.

14. Do you use transaction bundling services like Flashbots, Jito, or similar?

Ans: Yes, we use Jito for transaction bundling and priority inclusion. Jito enables us to reduce latency and increase the likelihood of front-run and back-run success. It is a critical part of how we maintain execution speed in highly competitive MEV environments.

15. What type of AI is implemented (predictive models, reinforcement learning, etc.)?

Ans: We primarily leverage predictive AI models trained on transaction density, block inclusion patterns, and recent fee trends. It forecasts the optimal gas price needed to ensure inclusion without overpaying, even during volatile periods.

These models are continuously updated with new data, allowing the bot to improve its decision-making over time and avoid unprofitable trades.

16. What data sources are used (real-time, historical, or simulated)?

Ans: SMARTS relies on a combination of real-time, historical, and simulated data to

optimize its MEV strategies. Real-time data is pulled directly from blockchain mempools and DEX APIs to identify immediate opportunities. Historical data is used to train AI models and understand long-term behavior patterns. We also simulate trading environments to test new strategies and configurations without risking real capital.

22. Why was only a simulator shown during the webinar instead of real trade data?

Ans: The demo shown during the webinar was not a simulator. It was a real-time interface built on top of our main system to help users visualize how MEV sandwich trades work. For transparency, users can also access the actual live trading feed via our platform, which displays real-time sandwich executions. The only difference is that during the demo, token selection was done manually for illustration purposes, whereas in the live system, the bot autonomously identifies and executes profitable trades once funds are authorized.

23. Are trades executed from one pooled smart contract, or are funds isolated per user?

Ans: Trades are executed through a unified contract system that manages pooled capital, not through isolated contracts per user. While funds are collectively deployed for efficiency, user-level accounting is maintained off-chain. This architecture avoids liquidity fragmentation, reduces redundancy, and enables faster execution, optimized gas usage, and more effective MEV strategy coordination.

29. How is the company prepared for hacking by quantum technology?

Ans: This scenario is theoretical and distant—quantum computers today are nowhere near powerful enough to break widely used public-key cryptography like RSA/ECDSA. Experts estimate that a fully capable machine ("Q-Day") still lies a decade or more away

Mitigations are real, robust, and actively in deployment—we're in the process of shifting to NIST-approved PQC algorithms.

If quantum crypto-break did happen, it's not just crypto that dies—it's almost every digital system worldwide, reinforcing that it's a wider cybersecurity issue, not a crypto-specific collapse.

30. Which specific bot address is generating these transactions? Can you tell me where to look it up so I can monitor on Solscan in real time?

All MEV activities and transactions from our bot is documented in our official MEV report. Each entry includes the transaction hash, which can be copied into Solscan or any Solana blockchain explorer to view the details in real time.

31. I wonder when this bot was launched — is it possible to look at its very first transaction?

The bot's infrastructure took approximately six months to build, covering node deployment, machine integration, and arbitrage algorithm development. After a further two months of optimization, the system became fully operational. The earliest transactions that the bot executed, whether test or official launch trades, are documented in our MEV report. You can trace these directly in Solscan for independent verification.

32. The statistics are very similar to general MEV data for Solana. How can I be sure that this is your bot and not just an example of someone else's transaction?

As mentioned, our MEV report records all transactions executed by our bot, all of which can be verified on-chain through Solscan and other blockchain explorers. For additional proof, we regularly conduct live demonstrations, where you can observe our system generating MEV transactions in real-time, and match them directly to the recorded data.

33. Is it possible to compare the transactions in parallel via Solscan or SolanaFM to make sure they are synchronized?

Absolutely. You can cross-reference the transaction hashes in our MEV report with blockchain explorers such as Solscan or SolanaFM.

34. How is the profit sent from the addresses of these bots to the wallet for distribution within the community, and is this transaction data available?

All extracted profits are converted via an internal swap process before crediting to user acounts. This extra layer serves two purposes: it ensures profit isolation for accounting accuracy and reduces the risk of exchanges flagging withdrawals as suspicious MEV activity. This design is based on prior experience, where direct transfers from MEV-linked addresses to exchanges often resulted in account reviews or fund freezes.

In addition, we avoid sending profits directly from the bot's own addresses to enduser wallets to maintain competitive security. Exposing those wallets would make it possible for competitors to monitor our activities, detect trading patterns, and frontrun our strategies. To counter this, our bots operate on multiple wallet addresses, making it significantly harder for external parties to link our activities or gain an advantage.

35. Client Deposits

- Which network address do client funds go to immediately after depositing via the bot?
- Why is the deposit wallet empty, while the payout wallet has ~30,000 USDT—significantly less than the profits the platform claims to generate in just a few hours?
- Can you provide a full list of addresses where deposits are sent and show the last 10 transactions involving them?

Ans: We have developed a secure and comprehensive fund management system to handle deposits and distributions within the SMARTS MEV platform. Each user is assigned a unique deposit address. Once a deposit is detected, our system automatically routes the funds into designated hot wallets via our internal transaction router.

This router manages multiple groups of hot wallets for both payouts and MEV trading. The wallet you referenced is only one within a broader group and does not represent the total funds under management.

For security reasons, preventing exchanges, malicious actors, or external parties from identifying and targeting our hot wallets, and to safeguard user privacy by avoiding traceability to individual deposit addresses, we are unable to share the complete list of wallet addresses or transaction histories.

36. MEV Bot Addresses & Monitoring

- If the bot addresses are public, please share them for direct tracking on Solscan or SolanaFM.
- Instead of selective hashes in MEV reports, I'd like to see the complete flow of all bot transactions over the last 24 hours.

Ans: All MEV activities are documented in our official MEV report. Each record includes a transaction hash, which can be independently verified on Solscan, SolanaFM, or any Solana blockchain explorer for full transaction details.

However, we cannot disclose the complete list of bot addresses. Revealing these addresses would compromise operational security and increase the likelihood of blacklisting by node operators or DEX protocols. This policy is critical to maintaining the stability and continuity of our MEV operations.

37. Payout Chain

- You mentioned an internal profit swap before distributing funds to clients. Can you show a concrete example?
 - From which bot address was the profit sent to the swap address?
- Where did it go afterward?
- A screenshot or transaction hash (no older than 24 hours) would be helpful.

Ans: As explained in Question 35, we cannot share a full transaction trail. Providing this information would expose all intermediate addresses in our routing system—including hot and cold wallets—and potentially allow tracing back to user deposit addresses, creating unacceptable security and privacy risks.

Authenticity & Transparency

2. How does your technology differentiate from other MEV solutions on Solana?

Ans: Fundamentally, all MEV strategies follow similar mechanisms. Most MEV solutions on Solana focus on raw speed, but ignore user experience and trade management.

What truly sets us apart is the performance of the underlying infrastructure, specifically, the speed of execution (low-latency monitoring), efficiency in transaction fee optimization, and the intelligence of opportunity detection algorithms.

We've built a full-stack infrastructure that combines speed, intelligence, and usability. That's what gives us an edge. We use low-latency infrastructure for real-time monitoring, a dynamic gas optimization algorithm that adjusts fees based on network conditions, and an advanced MEV opportunity detection algorithm that continuously identifies high-value trades ahead of the curve.

17. How does Al help maintain profitability when the number of users increases?

In the webinar, it was explained that increasing users from 50,000 to 250,000 would not hurt the profitability of early users, thanks to Al. However, your documentation already states that Al is currently used. This means the benefit of Al is already in effect and cannot prevent future profit dilution unless something new is introduced. Can you explain this contradiction in clearer terms?

- If Al is already implemented, why is it described as a future upgrade in the docs?
- Is Al actively involved in real-time execution or only used as a support tool?

Ans: The AI we've currently deployed operates within specific layers of the system, primarily in prediction and strategy selection. It does not yet manage capital allocation or coordinate actions across users.

What we outlined in the webinar and documentation refers to the next phase of development: a full MEV AI agent. This advanced agent will handle intelligent fund distribution, capital aggregation, and autonomous strategy refinement. It will continuously learn and adapt to maximize profitability as the user base grows, ensuring sustained performance even with increased participation.

In short, while AI is already integrated into our system, the full power of AI-driven optimization, particularly in coordinating user behavior, will be realized in our upcoming architecture.

18. Can you provide examples of sandwich transactions executed on-chain?

Ans: Live transactions are broadcasted on our website. Alternatively, if you are interested, please reach out to request for a live demo.

19. Is there a public dashboard or trade explorer link?

Ans: https://report.smarts.bot/

20. If users receive separate contracts, how do you manage liquidity fragmentation and gas scaling?

Ans: Users do not receive one-to-one dedicated smart contracts. Instead, we operate a unified contract system that manages pooled capital while maintaining user-level accounting off-chain. This design eliminates liquidity fragmentation and significantly improves execution efficiency. Gas usage is optimized through centralized transaction bundling and routing logic, ensuring scalability without compromising performance.

21. Can you share verified contract addresses on Solana? Are your contracts public on Solscan or SolanaFM?

Ans: No. On the Solana network, smart contracts are deployed as compiled executable binaries, not as human-readable open-source code. This is standard across Solana.

Even on EVM-based chains where contracts can optionally be open-sourced, MEV strategies are typically kept closed-source. Open-sourcing MEV contracts would expose the logic to competitors and increase the risk of exploitation or reverse engineering, which directly undermines their effectiveness.

22. Why was only a simulator shown during the webinar instead of real trade data?

Ans: The demo shown during the webinar was not a simulator. It was a real-time interface built on top of our main system to help users visualize how MEV sandwich trades work. For transparency, users can also access the actual live trading feed via our platform, which displays real-time sandwich executions. The only difference is that during the demo, token selection was done manually for illustration purposes, whereas in the live system, the bot autonomously identifies and executes profitable trades once funds are authorized.

24. Why is sandwich trading described as a positive mechanism in the documentation, when it clearly harms other users and undermines DEX integrity?

Ans: Sandwich trading, and MEV in general, has always been a controversial topic in the blockchain space. It is not something introduced or amplified by SMARTS, but rather a native consequence of blockchain architecture.

Historically, MEV has been a zero-sum, winner-takes-all game dominated by a few entities with access to advanced infrastructure, proprietary algorithms, and large capital. SMARTS changes that dynamic by opening MEV participation to everyone. Users can choose to stake their capital to support our infrastructure and scaling efforts, in return, they receive a share of the profits generated. From this perspective, SMARTS represents a positive mechanism: it democratizes access to MEV profits and gives users a fair chance to benefit from an otherwise closed system.

That said, we are not claiming MEV itself is inherently positive. Rather we believe SMARTS is a more ethical and transparent way to engage with the unavoidable reality of MEV.

25. Real MEV bots require:

- real-time access to the mempool
- direct connections to private RPCs or Flashbots
- · writing custom smart contracts
- There are no "plug-and-play" solutions that anyone can use to beat the bots of the big DeFi arbitrage firms.

26. "You must deposit" = red flag

- They often make you:
- connect your wallet → approve tokens → then drain
- ullet or they promise you profits ullet but they only pay them with the money of new entrants (Ponzi scheme)
- or even worse: no withdrawals possible

ANS Questions 25&26:

We're not offering a "plug-and-play" MEV solution—such tools don't exist at the serious, competitive level of DeFi. Instead, when users deposit funds into our system, those funds are allocated into our main MEV infrastructure, which allows us to run high-frequency simulations and execute transactions on-chain quickly—without requiring repeated manual approvals.

To clarify:

No token approval is needed when connecting your wallet on our website. The USDT deposit is necessary because it enables our system to manage capital efficiently within the core MEV engine.

Our Smarts MEV System consists of four interconnected components:

Mempool Data Streaming & Detection (Hybrid On-chain/Off-chain)

We use a high-speed gRPC-based stream to access the mempool with latency under 100ms. Every new pending transaction is instantly analyzed for potential MEV opportunities.

Sandwich Attack Bundle Construction (Off-chain)

Once a target is identified, our algorithm calculates the ideal frontrun amount to push the price to the target's slippage limit—maximizing profit. We build a transaction bundle:

frontrun \rightarrow victim \rightarrow backrun.

Simulation Engine (Hybrid On-chain/Off-chain)

We run simulations in a local node environment to optimize trade paths and gas usage. This ensures safety against honeypots and other smart contract risks before any transaction hits the blockchain.

Trade Execution (On-chain)

The final bundle is sent to the blockchain via smart contracts, using optimized gas parameters and direct access to builders or Flashbots for inclusion.

This is not a retail tool, and it's not for beginners. We operate a high-performance, risk-mitigated MEV infrastructure, and the deposit mechanism enables efficient capital deployment into this closed-loop system. There's no approval risk from your wallet, and withdrawals are always available.

27. If it were true, they wouldn't sell it

- If an automatic and foolproof MEV bot existed...
- they would use it for themselves
- or they would sell it to professional investors, not to those with 100-500 USDT
- Those who sell you access do so because they make money from you, not from the bot.

ANS:

We're not selling access to a magic plug-and-play MEV bot. We don't advertise guaranteed profits or automatic tools that anyone can operate. What we offer is participation in a structured, professional-grade MEV operation, where user funds are pooled and deployed through our internal MEV infrastructure.

The reason we seek external funding is simple: with more capital, we can significantly scale and optimize our MEV operations. Specifically:

More capital allows us to deploy additional computing power and run more nodes, which enhances our ability to execute MEV strategies efficiently and at scale.

More Aggressive MEV Opportunity Targeting. With sufficient funds, we can loosen the constraints on our MEV opportunity identification algorithms. This enables us to adopt a more aggressive approach—for example, using blind pre-orders to preemptively compete for MEV opportunities. This not only improves our profit

potential but also helps suppress competitors, since MEV is fundamentally a zerosum game.

Expansion Across Chains and Strategies. Additional funding also supports our expansion into other blockchains, as well as into more advanced forms of MEV, such as atomic arbitrage and backrun-based liquidations, further amplifying profit potential.

28. Check if it's listed on DappRadar / CoinGecko.

- → If you don't find it anywhere official, that's a bad sign.
- → Is it verified on Etherscan or similar?
- → Does it have auditing? (Certik, Hacken, etc.

Can we argue or provide as *proof* either a whitepaper or official dictation?

ANS:

We do not open-source any core technical details or system code, and for good reason:

MEV has always been the crown jewel of blockchain technology—highly complex and fiercely competitive. To stay ahead and capture MEV opportunities, one must rely on system-level optimizations, robust infrastructure, and cutting-edge algorithms. It is fundamentally a zero-sum game.

Our core advantage lies in the meticulously built system and continuously optimized algorithms we've developed over a long period. As such, it is absolutely out of the question for us to open-source any part of our MEV system's code. If it were ever leaked, competitors could quickly replicate our approach and directly compete with us, ultimately eroding our profits.

If you've done your own research, you'll find that: There are some open-source mev bots in github, most of them contain backdoors or malicious code designed to steal private keys and some of them are educational only, with no real-world profitability.

Regarding listings on DappRadar or CoinGecko:

These platforms are primarily for tokens, DeFi protocols, or VC-backed consumer dApps. Our system is not a retail-facing token project, and there's no reason or value for a backend infrastructure MEV system like ours to be listed there.

30. How long did it took to develop the systems?

If we focus solely on the Smarts MEV system, it took us six months to build it from the ground up. This included setting up the nodes, integrating a fleet of machines, and developing and optimizing the arbitrage algorithms, ultimately resulting in a stable MEV system. After the initial build, it took an additional two months before the system was fully operational. During this period, we conducted extensive testing to stabilize system parameters while continuously refining our MEV detection and gas optimization algorithms.

It's also worth noting that prior to developing this specific system, our team had already spent two years conducting research and experimentation in blockchain infrastructure and MEV-related technologies.

Governance and Regulation

1. Do you have a roadmap with clear milestones (features, chain integrations, governance)?

Ans: Yes. We are currently finalizing our next chain integration, with two additional integrations planned before Q4 2025. A public roadmap will be released thereafter.

2. What are your long-term plans for license holders?

Ans: License holders will be assessed based on tenure, trade volume, and community engagement. As the platform evolves, license holders may receive added benefits beyond usage rights, with high-performing holders gaining perks like early beta testing for new bots and exclusive privileges like access to private pools.

3. What legal entity stands behind SMARTS, and where is it registered?

Ans: SMARTS is currently in the process of finalizing its legal structure. The entity will be registered in a jurisdiction that supports digital asset activities and offers regulatory clarity.

Asia was initially considered an ideal jurisdiction during strategic planning in late 2024. However, recent regulatory shifts prompted a reassessment. We are currently in discussions to onboard legal advisory support and anticipate formalizing our entity structure post-August 2025.

4. Please provide the company name, registration number, and jurisdiction.

Ans: This information will be shared once the jurisdiction and legal structure is finalized.

5. Is the company licensed to manage user funds or offer investment products? If not, under what legal exemption do you operate?

Ans: No, the platform does not manage user funds or offer investment products. Users purchase licenses to access our bots. Since no financial management or solicitation is involved, no exemptions are currently required. Future versions of the platform may introduce features that require regulatory clarification, which is why legal entity structuring is a priority.

6. Do you provide public Terms of Service that outline liability and legal protection for users?

Ans: Not yet. The Terms of Service are currently in development and will be released alongside the formal launch of our governance framework and finalized legal entity structure. Our objective is to ensure the terms are clear, enforceable, and align with

international legal standards. Until then, user participation remains non-custodial and voluntary, with no centralized control over user funds.

7. Do you offer transaction logs or exportable profit statements suitable for tax reporting?

Ans: Currently, tax reporting features are not available within the platform. That said, users can access historical activity via their connected wallet or supported blockchain explorers to fulfill their tax obligations in their respective countries of residence.

8. How does the company comply with GDPR, KYC/AML, and upcoming European MiCA regulations?

Ans: We follow GDPR principles by minimizing data collection, limiting data retention, and offering users control over their personal information. In addition, we are actively preparing for MiCA and other jurisdictional frameworks to ensure future compliance, particularly as the platform evolves. Further updates will align with evolving legal standards as part of our roadmap.

Market Question

1. Who is legally accountable in the event of losses, failed executions, or systemic errors?

Ans: Responsibility for trading outcomes lies with the individual user. SMARTS functions as a self-directed automation tool and does not custody user funds or provide investment guarantees.

2. Is 100% of a user's deposit actively traded, or only a portion?

Ans: By default, the system does not deploy 100% of the capital at once. It maintains liquidity buffers to avoid excessive exposure and to ensure transaction flexibility across varying market conditions. The allocation also fluctuates along with the availability of MEV arbitrage opportunities on the network.

3. If new users are added, how do you prevent older users from being diluted?

Ans: We address user growth by continuously improving the backend infrastructure and expanding to new chains. Each new user adds more network data, which enhances the Al's predictive models. As a result, the system grows more effective with scale rather than being diluted by it.

4. If more data helps performance, why not create internal data wallets instead of selling licenses?

Ans: While internal wallets could provide valuable training data, SMARTS is designed to be community-powered. Selling licenses helps scale the user base quickly and fosters broader adoption. While internal data aggregation is valuable, it limits decentralization. Our goal is to allow users to benefit from their own trading while contributing indirectly to the system's overall learning and performance.

5. Is Prakash Mehra publicly verifiable (LinkedIn, GitHub)? Who else is part of the core team?

Yes, Mr. Prakash Mehra is publicly verifiable and maintains an active presence on social media platforms such as X. As for the broader technical team, they are made up of experienced professionals based across multiple countries.

At this time, we have chosen not to disclose individual identities due to the proprietary nature of our underlying technology. Our MEV execution architecture is difficult to replicate, and for risk management purposes, maintaining anonymity helps safeguard the protocol from potential exploitation. We may consider limited public appearances by team members in the future when appropriate.